
Girls Who Code At Home
Activist Toolkit Part 5

Building: Make it Responsive

2

Activity Overview

Your website is looking great with the CSS you added in the last activity! For this part of the series, we will
explore how to make sure your website looks great on different screen sizes like laptop, tablet, and mobile
devices. This is called responsive design.

PART 5
BUILDING

Make it
Responsive
with CSS

Add styling
that adapts
your site to

different
screen sizes.

PART 2
PLANNING

Wireframe
& Mockup

Layout the
skeleton of

your website,
then add in
your design
elements.

PART 3
BUILDING

Intro to
HTML

Build the
framework of

your site
using HTML.

PART 4
BUILDING

Intro to
CSS

Style the
HTML

elements on
your site

using CSS.

PART 1
PLANNING

Research &
Feedback

Identify and
research a

cause.

Materials
➔ Computer

➔ Trinket or the text editor of your choice

➔ Code you wrote during Part 4

➔ Final Project Example Code

Screen size on a laptop

Note: If you did not complete Part 4,
you can access Parts 1, 2, and 3 here. If
you have some experience with HTML,
you can remix and use the Part 4
Example Code that stops at the end of
Part 4.

Screen size on a mobile device

https://trinket.io/
https://trinket.io/html/5e998bd30c
https://girlswhocode.com/programs/code-at-home
https://trinket.io/html/a1ccc1c2e4
https://trinket.io/html/a1ccc1c2e4

PURPOSE

How can the world at large benefit from people from all communities
learning computer science?

3

Women in Tech Spotlight: Teagan Widmer

Advisor, a website that provides investing advice. To this day, Teagan continues advocating for the
trans community and maintaining REFUGE Restrooms, which has since launched on iOS and
Android devices.

Check out this video from Social Good Apps Breakfast to hear Teagan explain what motivated her
to create her first piece of technology.

Share your responses with a family member or friend. Encourage others to read more about Teagan
to join in the discussion!

When Teagan was in grad school, she noticed that
safe2pee, a website helping LGBTQ community
members find safe bathrooms, shut down
unexpectedly. Although she majored in theater and
had no experience with coding, she decided to attend
a hackathon and eventually created REFUGE
Restrooms, an open-source gender-neutral bathroom
locator.

As a result of her app’s success, she decided to
continue developing software and landed a role as a
Scrum master and full-stack engineer at Future Image Source: Techies

Reflect
Being a computer scientist is more than just being great at coding. Take some time to reflect on
how Teagan and her work relates to the strengths that great computer scientists focus on building -
bravery, resilience, creativity, and purpose.

https://vimeo.com/142199024
https://techiesproject.com/teagan-widmer/

4

Step 1: Learn About Responsive Design (2-4 mins)
The big question we want to answer with this activity is: How do I design my website for many different
devices?

Right now, your website only works well on a computer screen that is the size of a laptop. Open your
project website and compare how it looks in the smaller Result window (to the right of the editor) with
the way it looks in full screen mode (as a reminder, click Share > Publish > Site URL).

The smaller screen probably breaks your styling. That is, it breaks the styling rules of your current CSS
and doesn’t appear right. If you look at your project on a smartphone, it will also likely break.

In order to design for multiple size screens, we need to use responsive design. This is a way of styling
your website so the layout adapts based on the size of the screen.

Let’s look at the Girls Who Code website as an example:

In the smaller size
screen on the right,
the heading text is
not aligned properly,
there is too much
space on the sides,
and the images are
too small to see.

The laptop screen displays the full navigation bar and positions the map image next to the map text. The
tablet screen condenses the nav bar to a drop down and reduces the map image size. The mobile screen
wraps the map text above and below the map image. All of these changes increase the website’s
usability across screen sizes.

Mobile
320px  to 480px

Tablet
481px  to 768px

Laptop
769px  to  1024px

Responsive websites are designed so that the elements on the page can resize and adjust their layout to
fit different screen sizes. These days more and more people are accessing websites on phones and
tablets, so it has become even more important to design and build websites that work for multiple screen
sizes. You will learn about two techniques you can use to make your site responsive: flexbox and media
queries. They allow designers to achieve popular layouts more simply and with cleaner code. Read about
them below.

5

Step 1: Learn About Responsive Design (cont.)

FLEXBOX
Flexbox allows you to arrange and position groups of
visual elements on a website more easily than the box
model. It is particularly helpful for laying out images.

MEDIA QUERIES
Media queries allow you to create CSS
rule sets that are only implemented if

the screen is a certain size.

Step 2: Meet Flexbox (2-4 mins)

In the last activity, you learned about the box model as a tool to layout elements on your site. It’s great for
styling some parts of your site, but it gets complex quickly when you have a collection of elements that
you want to size and align in a particular way. Flexbox is great at this. It can easily position a set of three
images horizontally from left to right or center an element vertically and horizontally inside another
element or style nav bars. Check out this page for more on uses of flexbox.

HOME GET STARTED ABOUT

Flexbox is short for the CSS Flexible Box Layout Module, which is a part of the current version of CSS.
Flexbox allows HTML elements to change their size and position based on the size of the screen. These
elements live in a special flex container that has a defined size. The flex container allows elements to
shrink, expand, or wrap onto new lines to fill the free space inside the flex container. This means that
none of the items will overflow outside the container.

Flex
Container

Flex ItemFlex ItemFlex Item Examples of challenges
flexbox helps us solve:

https://www.smashingmagazine.com/2018/10/flexbox-use-cases/

6

Step 2: Meet Flexbox (cont.)

The elements included in the flex container are considered flex items. Styling on a flex container will
affect all items inside the container, but you can also add properties to the individual flex items for more
customization in layout.

Step 3: Add the Flex Container (2 mins)
To get started you’ll need to be able to define and select the flex container. You can do this by adding a
<div> with a class attribute around the elements that you want to layout with flexbox. In this case, the
elements we want to layout with flexbox are the images and any corresponding image attributions. If you
remember all the way back to Part 3, we added a <div> tag around the row of images in our wireframe.
We will turn this <div> tag into our flex container.

<div class=”flex-container”>

Let’s add this to our project now:

➔ Go into your index.html file.

➔ Add a class attribute to the <div> tag that contains all
the images you want to include. Give it a recognizable
name such as “flex-container”.

➔ Now we need to create the associated CSS rule set. Go
to your style.css file.

➔ Find the /*Images*/ comment under the
/*HOMEPAGE*/ comment. Since our flexbox styling is
for images, we are including it here. You can add
another comment to remind yourself that these are
flexbox rule sets if you like.

➔ Under the comment, use the class name you just added
to the <div> tag in your index.html file to define the
class CSS selector for your flexbox container.
Remember that class selectors begin with a . symbol.

/* Images */

.flex-container {

}

index.html

style.css

7

Step 4: Add the Flex Items (2 mins)
Now that we have our container in place, we need to be able to define and select the flex items. We will
follow a very similar process to creating our flex container: assign a class attribute to each <div> tag
around the elements you want to include as a single flex item. In this case, our flex items are the individual
images and any associated image attributions. Since we already added <div> tags around each image in
Part 3, all we have to do is add the class attribute to the <div> tag and create the corresponding rule set
in our CSS file.

<div class=”flex-items”>

Let’s add this to our project now:

➔ Go to index.html.

➔ Add a class attribute to the first <div> tag containing
an image (and text if you have it) that you want to
include as a flex item. Give it a recognizable name such
as “flex-item”.

➔ Add a class attribute to the second <div> tag
containing an image (and text if you have it) that you
want to include as a flex item. Give it the same class
attribute name as the first flex item.

➔ Repeat the last step for the third image.

➔ Now we need to create the associated CSS rule set. Go
to your style.css file.

➔ Under the rule set you created for the flex container, use
the class name you added to the <div> tags above to
define the class CSS selector for your flex items.
Remember that class selectors begin with a . symbol.

/* Images */

.flex-container {

}

.flex-items {

}

index.html

In the next step, we will explore a few key flexbox styling properties to activate your flex container
and items. These are the properties that you will use in your own layout.

style.css

8

Step 5: Examine Flexbox Styling Properties (10 mins)
Let’s return to our cute animal website from Part 3 to explore how flexbox styling properties work. Since
this site is very simple, we will be able to get a better idea of how these flexbox properties work. After we
explore these properties, we will apply them to your project. In this section, you don’t have to write any
code, but you can remix the project if you like and tinker with the values to see how they work.

First, let’s see how the project currently displays:

The only CSS rule sets we have now are below. Let’s look at those first:

img {

 width: 100%;

}

.subtitle {

 text-align: center;

}

All of the following elements are stacked on top of each other: a
header, introduction text, an image of a piglet, the piglet subtitle,
an image of a baby skunk, the baby skunk subtitle, an image of a
baby hedgehog, the baby hedgehog subtitle, and image
attribution text.

We used the width property to define the width of our
image. Later on, we will want each image to fit the full
width of the flex item container. Instead of using pixels, we
used a percentage value so the images can adapt to the
size of the screen.

In our index.html file, we created a class attribute with the
name subtitle for the text under our images: <p
class=”subtitle”></p>. In our style.css file, we
created a ruleset using the .subtitle class selector and
added a text-align property to center the text.

Flexbox Styling Goals

Before we look at any flex properties, let’s break down our styling goals:

➔ Goal 1: Layout three cute animal images in a row.

➔ Goal 2: Keep all the images on one line.

➔ Goal 3: If the screen size changes, the images should grow or shrink proportionally.

➔ Goal 4: The image widths should be equal.

➔ Goal 5: There should be a small amount of space around each image so they are not bunched up
next to each other.

https://gwc-education.trinket.io/sites/my-cute-animal-website

9

Based on what we have learned so far, flexbox is a perfect solution for this challenge! To learn about
flexbox properties, we will add properties one at a time to see what they do. We’ll begin with the flex
container.

Step 5: Examine Flexbox Styling Properties (cont.)

Flex Container Properties

We can achieve many of our goals with the three properties below. We will only apply these properties to
the flex container, since we want them to apply to all of our flex items - in this case, the flex items are our
images.

display

The first property we need is the display property. To create our flex container, we need to set the
value of display to flex. This is the magic that turns our <div> into a flex container! Let’s add it
to the flex container rule set and see what happens.

.flex-container {

 display: flex;

}

CSS RESULT GOAL UNLOCKED

flex-direction

Right now, our images are already in a row. However, we still need to specify to our browser that we
want our flex items to be in a row. We can use the flex-direction property and set it to row to
achieve this. The flex-direction property tells the browser which direction the flex items should
go in: left to right, right to left, top to bottom, bottom to top. Basically you can think of it as telling the
browser to create a row or column. The flex-direction property can be set to row, row-reverse,
column, or column-reverse.

.flex-container {

 display: flex;

 flex-direction: row;

}

CSS RESULT GOAL UNLOCKED

Goal 1: Layout three cute
animal images in a row.

Goal 1: Layout three cute
animal images in a row.

10

Step 5: Examine Flexbox Styling Properties (cont.)

flex-wrap

Flex items will try to fit on one line by default. Sometimes you may want to change this and allow
items to wrap and position items on the next line. According to Goal 2, we only want our images on
one line, so we want to define that property and set the value to nowrap. This means our images
won’t go onto more than one line. The flex-wrap property can be set to nowrap, wrap, or
wrap-reverse.

.flex-container {

 display: flex;

 flex-direction: row;

 flex-wrap: nowrap;

}

CSS RESULT GOAL UNLOCKED

Goal 2: Keep all the
images on one line.

Note: Setting the
value to wrap
would place items
on a new line.

Those are the three main properties we need. Before we completely close that curly bracket, let’s test in to
check in on Goal 3 - changing the image size proportionally to the screen size.

Drag the right side of your
screen as far as you can to the
left. You should see the images
change as the size of the
browser window changes!

Flexbox Item Properties

We can add properties to flex items as well. There are special flex item properties you can apply in
addition to the regular CSS properties you learned about in Part 4. In this project, we only need to use
one special flex item property: flex-basis. We will also include a property you are already familiar
with: margin. We include both of these properties in the .flex-item rule set.

Note: We do not need to define the display property for flex items, only for flex containers.

flex-basis

This flex-basis property sets the initial size of the flex item before space is distributed according
to the rules in the flex container. We are going to use this property to define the width of our
elements. By using percentage values, the images will grow or shrink proportionally.

11

Step 5: Examine Flexbox Styling Properties (cont.)

That’s it! We accomplished all of our goals for our cute animal website. In the next section, we will
practice applying these concepts to your Activist Toolkit project.

Because we set our flex-wrap property to nowrap,
all of the images will show up on one line. Right now,
they are not equal width because the image sizes are
all different, so we need to define the width we want our
items to have. We set flex-basis to 100% to tell the
flex container that each element inside of it should
display at equal widths.

.flex-item {

 flex-basis: 100%;

}

CSS RESULT GOAL UNLOCKED

Goal 4: The image
widths should be equal.

The baby hedgehog is not the same width.

The baby hedgehog is the same width!

margin

We want some space around our flex items so the images are not touching each other. One solution
is to use the margin property to set a margin around the flex items. If we set our margin value to
1%, here is the result:

.flex-item {

 flex-basis: 100%;

 margin: 1%;

}

CSS RESULT GOAL UNLOCKED

Goal 5: There should be
a small amount of space
around each image so
they are not bunched up
next to each other.

TAKE IT FURTHER

There are so many more flex container and flex item properties, but these are the only ones we will
discuss. Flexbox might feel confusing at first, so try different properties out one by one. To learn more

about the flexbox properties and their values take a look at this CSS Tricks’ A Complete Guide to
Flexbox. We also recommend playing Flexbox Froggy for some fun practice with Flexbox properties.

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://flexboxfroggy.com/

12

Step 6: Add Flexbox Properties to Your Project (5-7 mins)
Now that we have learned more about the flex container and flex item properties we can use to style our
row of images, let’s add them to your Activist Toolkit project.

Add the Flex Container Properties

Include the following properties inside your flex container rule set. Our class selector name is
.flex-container, but you might have chosen a different name. Remember: It should be the same name
as the class attribute in your index.html file.

.flex-container {

 display: flex;

 flex-direction: row;

 flex-wrap: nowrap;

}

CSS DESCRIPTION

➔ .flex-container: Add the class selector.
➔ display: Create the flex container by setting this property to flex.
➔ flex-direction: Display flex items in a row or column.
➔ flex-wrap: Keep all the flex items on one line.

Add the Flex Item Properties

Include the following properties inside your flex item rule set. Our class selector name is .flex-item,
but you might have chosen a different name. Remember: It should be the same name as the class
attribute in your index.html file.

.flex-item {

 flex-basis: 100%;

 margin: 1%;

}

CSS DESCRIPTION

➔ .flex-item: Add the class selector.
➔ flex-basis: Set the size of each item before any extra space is

distributed. We want all the items to fit on the line equally, so we won’t
have any extra space.

➔ margin: Add some space around the flex items. Try different values until
you are satisfied with how it displays.

Test It

Let’s see how it displays:

➔ Save your project.
➔ Open your project in a new tab if it isn’t already. (You can do this by clicking Share > Publish > Site

URL).
➔ Reload the tab with your full website so it updates with the changes.
➔ Drag the right side of your browser window to the left so the screen size decreases. You should

see the images change in size as the screen gets smaller.

13

If it’s not working the way it’s supposed to, go back and make sure that:

➔ There are no typos in the properties and values.
➔ There is a semicolon ; at the end of each property.
➔ All your curly brackets {} are closed.
➔ The CSS selector for your flex container and flex item rule sets corresponds to the <div> class

attribute in your index.html file.

Step 6: Add Flexbox Properties to Your Project (cont.)

Step 7: Meet Media Queries (2-4 mins)
If you remember back to the top of this section, we defined responsive web design as a way of styling your
website so it changes or adapts based on the size of the screen. Flexbox is one tool you can use for
responsive design, but there are times when you might want to change the styling of an element based on
the screen size.

For example, if you resize your browser window as small
as it will go, you might notice that it is quite difficult to see
your row of images. Flexbox will only take us so far. We
also need to use media queries.

Media queries are a second tool that allows you to tailor
your CSS based on the device's screen size or a media
type. They can be used to check all sorts of possible
scenarios:

➔ Width and height of the visible area of a webpage
(also called the viewport)

➔ Width and height of a device
➔ Orientation (i.e. landscape or portrait mode)
➔ Screen resolution

We will only focus on screen size media queries, but you
can learn more about other media types from W3Schools.

Now let’s take a deep dive into the syntax.

@media

To create a media query, we use @media rules to define the type of media we want to apply the
styles to and any conditions (like screen size) that the browser should test for. If the condition set up
by this rule is met, the browser applies the CSS rule sets inside the curly brackets.

https://www.w3schools.com/css/css_rwd_mediaqueries.asp

14

Here is an explanation of the syntax:
➔ @media: The keyword to indicate there is a media query.
➔ mediatype: Specifies the type of media that the styles will apply to. These values can be

screen, print, speech, or all. We are only covering screen.
➔ and: This keyword adds the first condition (the mediatype) to the second condition (the

media feature).
➔ (): We use parentheses to indicate we are setting a condition using one or more media

features.
➔ media feature: These features let us test for certain conditions of the media query, such

as whether or not the screen is greater than a certain size. You can combine multiple
features together using and, or, not, etc. See W3School's full list of media features.

➔ { }: All rule sets that will be applied if the condition is true must be in curly brackets.
➔ /* CSS Rule Sets */: Add all CSS rule sets you want to apply if the condition is met.

You can add as many rule sets as you like.

Step 7: Meet Media Queries (cont.)

@media mediatype and (media feature) {

/* CSS rule sets */

}

CSS

Step 8: Add a Breakpoint to Your Site (5 mins)
Breakpoint is a term you will hear a lot in responsive design. A breakpoint is the point when a media query
is introduced in order to prevent the style from breaking. You have probably seen a website "break" when
it's not designed for mobile. The images or font size might get too small to see, the text might move
outside of a box, a button gets squished to the side, etc.

Try resizing your browser window to see how your elements change based on the size of the screen. What
do you think the size of the screen is when it “breaks”?

Here are some common breakpoints you can use as a reference:

➔ 320px  to 480px for small devices (like smart phones)
➔ 481px  to 768px for medium-sized devices (like tablets)
➔ 769px  to  1024px for medium to large devices (like laptops)
➔ 1025px  to 1200px for large devices (like desktops)
➔ 1201px and more for extra large devices (like TVs)

https://www.w3schools.com/css/css_rwd_mediaqueries.asp

15

Add a Breakpoint

Let’s create a first breakpoint using the @media rule to fix it. Right now, if our screen is roughly less
than 850 pixels, the flex items (i.e. images) become extremely small. Instead of being in a row on only
one line, it would be better if they were in a column on multiple lines. This sounds like the flex-wrap
property we learn about earlier! We can just tell the images to wrap (i.e. move) onto the next line when
the screen reaches a certain size.

Step 8: Add a Breakpoint to Your Site (cont.)

Let’s add this to our project now:

➔ Go to the styles.css file. Find the comment block
that says /* CHANGE CSS BASED ON SCREEN
SIZE*/.

➔ Under the /*Breakpoint 1*/ comment, add
an @media rule that checks to see if the screen
has a maximum width of 850 pixels.

➔ Now we need to add the CSS rule sets we want
to change when this condition is met. Inside the
curly brackets of your media query, create
another rule set for the class selector of your flex
container. Our selector is .flex-container
but yours may be different.

➔ Add the flex-wrap property and set its value to
wrap.

➔ If you want to include other rule sets, you can
add them below .flex-container.

/*Breakpoint 1*/
@media screen and (max-width: 850px){

 /*Wrap images onto new lines*/
 .flex-container {
 flex-wrap: wrap;
 }

 /*Add more rule sets if you want*/
 header, main {
 padding-left: 50px;
 padding-right: 50px;
 }

}

This property tells the browser to wrap the flex items onto another line if the screen is less than 850
pixels. Let’s test it. Save your project and reload or open it in a full size browser window, then drag the
side of the browser window to make it smaller.

It works! When the screen width reaches 850 pixels, the images wrap
onto new lines. If you have other changes you want to make based on
screen size, follow this same process. You can make as many
changes as you want.

You can also add more breakpoints if you want. If you want to learn
more about responsive web design, check out these resources from
Mozilla and Free Code Camp.

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Media_queries
https://www.freecodecamp.org/news/css-media-queries-breakpoints-media-types-standard-resolutions-and-more/

16

Step 9: Extensions (5-15 mins)
In this activity series, we only scratched the surface of what you can do with HTML and CSS. You can
continue adding more content to your site with HTML or keep styling it with CSS selectors and rule sets.

Here are a few other ideas you could try out:

Extension 1: Finish Customizing Your CSS

If you haven’t finished adding your CSS or want to experiment with some new styling properties, try this
extension!

Extension 2: Add Another Page to Your Site

You can add a resources page for your audience to get more information or a page focused on another
topic related to your cause.

Extension 3: Make Your Website More Accessible

Read about the principles from the Web Accessibility Initiative, then try to implement one or more on
your site.

Extension 4: Add More Media

Media like images, audio, and videos can help you communicate your message in ways text cannot. Try
adding one or more below:

➔ Embedding YouTube videos with <iframe> is a fun way to make your website interactive. Get
started with this tutorial from W3Schools.

➔ An image gallery is a great option if you want to give your audience a set of visuals related to your
cause.

➔ If you collected audio stories and want to add them to your website, you can upload the files to
your asset folder, then use the <audio> tag to add them to your site. Here is a tutorial from
W3Schools to get you started.

Once you’ve finished your site, share it with your audience! Remember: The web is a powerful way to
communicate a message. Coding is just one way you can take action for causes that are important to
you.

https://www.w3.org/WAI/fundamentals/
https://www.w3schools.com/html/html_youtube.asp
https://www.w3schools.com/css/css_image_gallery.asp
https://www.w3schools.com/html/html5_audio.asp
https://www.w3schools.com/html/html5_audio.asp

Step 10: Share Your Girls Who Code at Home Project! (5 mins)
We have come to the end of our Activist Toolkit journey! Congratulations!!!

We would love to see your work and we know others would as well. Share your final project with us.
Don’t forget to tag @girlswhocode #codefromhome and we might even feature you on our account!

17

Follow these steps to share your project:

➔ Save your project first.

➔ Click the Share icon

➔ Choose the Link option in the dropdown menu.

➔ Copy this link and paste it wherever you would
like to share it.

Project Link

Stay tuned for more Girls Who Code
at Home projects!

